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Abstract

This investigation considers the thermo-mechanical effects of an

asperity traversing at a high speed over a semi-infinite medium with a

thin hard coating surface. The general analytical solutions of the

mechanical stress state, the temperature field and the thermal stress

state are obtained and expressed in Fourier transform space. The

asperity speed is sufficiently high such that the thermal stress is

much larger than that caused by the mechanical traction of asperity

pressure and friction. The analysis emphasizes the heating effect of

the fv.iction force, which leads to the initiation of the thermo-

mechanical cracking, or 'heat-checking' in the surface layer, the

substrate or their interface. For hard coating layers, the initiation

of a crack will occur at a depth 'ra (where the maximum principal

thermal stresses occur). The depth is found to be controlled

principally by the Peclet number.- It is found that, for a thick

coating layer, the crack will occur inside the surface layer where the

stress state is little affected by the substrate, for which the

estimate of fracture initiation is the same as that of a single

inaterial of the coating. Yet, for modified surfaces of thin coating

layer in which the thickness is of the same order of the n max' the

interaction between the surface layer and the substrate, through their

differences in mechanical and thermal properties, greatly influences

the combined stress state near the interface, and thus the crack

initiation in the neighborhood of ny max* The investigation employs the

Fourier transform technique for the analytical method in order to

facilitate the parametric study. The complex Fourier transform
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inversion could be done, within the strip of analyticity, alor a

carefully selected path. The speed of numerical integratior. can be

optimized with the proper choice of the offset, c, from the real axis,

which is the theoretical path of integration for Fourier inverse

tranform.
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Chapter I

Introduction and Literature Survey

1.1 Problem of Thermo-mechanical Cracking in Layered Medium

The present investigation studies the asperity and the material

parameters which influence the thermo-mechanical cracking in a medium

with a surface coating layer. The general failure mechanism is caused

by the frictional excitation of a high speed asperity traversing over a

coated surface. Maximum tensile stress is considered the principal

cause of mode I cracking in the hard wear material. Maximum shearing

stress especially in the coating/substrate interface may very well lead

to delamination failure of the coating layer. The understanding of

such a failure process shall improve the design of these devices by

alleviating the problem of friction cracking.

When two bodies in high speed contact under heavy loads slide

relative to each other, the nominal design pressure between the mating

surfaces is based upon the nominal design contact area. However, at

high operating speed, the actual contact area can be reduced by several

orders of magnitude. As a result, a low design pressure may result in

a very high interfacial pressure in the actual contact zone. Local

high temperature may occur due to excessive frictional heating in the

vicinity of the contact regions. Cracking may then happen caused by

the combined thermal heating and mechanical load leading toward wear

and functional failure of the device. This phenomenon is the so-called

4%
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"heat checking" or "thermocracking" [1]. Both the reduction the

performance life and the wasted energy are of concern to meznianical

designers. For improvement of the wear property of the surface, recent

effort has been directed toward surface modification. Research in

behavior of coated surface under asperity excitation, hence, has gained

importance recently.

A general survey of the problem of cracking through the development

of a frictional hot spot was discussed by Burton (2]. A series of

experiments carried out by Sibley and Allen [3] showed photographic

evidence of symmetrically moving hot patches in the contact zone.

Surface displacements and temperature field of a convective elastic

half space under an arbitrarily distributed fast-moving line heat

source were obtained, using integral transform techniques, by Ling and

Mow [41. The problem of thermal stresses, Mow and Cheng [5], and

temperature distribution, Ling and Yang [6], were examined. Two

dimensional models of heat checking in the contact zone of a face seal

were presented by Ju and Huang [7]. Two dimensional models in the

contact zone of a thick layered medium were presented by Ju and Chen

[8]. In their two-dimensional analysis of a layered medium, it was

shown that the material parameters affect strongly the stress state

that would cause thermo-mechanical cracking. The effects of thin

coating were shown, but a parametric study of a thinner surface layer

was not considered.
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1.2 Parametric Effects

The present work deals with a general class of problems for thermo-

mechanical cracking that is caused by a moving asperity traversing at a

high speed over a semi-infinite medium with a thin surface coated

layer. Such a thin surface layer is commonly designed for surface

modification to improve the wear property of the substrate, such as a

composite, which is generally of poor resistance to friction wear. The

frictional excitation of the asperity imparts a mechanical load as well

as a thermal load. Through frictional heating onto the surface

boundary of the coated layer, the high speed traversing heat source

behaves like a thermal shock. It is the combined thermo-mechanical

stress state that leads to the initiation of cracks in the surface

layer, the substrate or their interface. The stress states depend upon

the asperity characteristics, the coating layer thickness, and the

material properties of both the coating layer and the substrate. The

analysis of the thermo-mechanical field in a layered medium involves

the matching of the mechanical and the thermal properties of both the

surface layer and the substrate. The asperity characteristics also

play an important role. The individual influences can be protracted

from works on the parametric analysis of high speed asperity excitation

over a single material by Ju and Huang [9,10,11,12], which was a fully

three-dimensional model. The parameters, as inferred from the

mathematical model, are tabulated as follows;

UA 3



TABLE I

Asperity Parameters

V Asperity traversing speed

P(xi) Asperity pressure

a Asperity contact area width

TABLE II

Material Parameters

(A,p) or (E,v) Mechanical constitutive coefficients

p Mass density

hf Coefficient of Coulomb friction

aCoefficient of thermal expansion

PC Thermal diffusivity

k Thermal conductivity

This paper will expound their effects on the stress states and on

the locations of the maximum stress.

1.3 General Theory

At high speed traversing, the high temperature and surface yield

due to the excitation are subgranular. The plastic wear and surface

shear for hard wear material are demonstrated experimentally to be

restricted to a very thin surface layer (Blau [14], and Ruff and Blau

[151). If the critical point of initiation of thermo-mechanical

cracking is at a point of depth by an order of magnitude larger than

plastic depth, the base solid material subjected to the asperity

4
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friction is essentially elastic. Furthermore, for the presen- :urpose,

the material is homogeneous and isotropic without local fla,s. The

basic mathematical formulas of thermoelasticity describing the behavior

of continuous media are the following:

2
AV V + (X+i)grad div V - (3A+2j)a grad T + p(.1)

V 2 T -pcT, (1.2)

where u and T are the displacement and temperature, (A,p) are the

Lame's elastic coefficients, p is the mass density, a is the

coefficient of thermal expansion, x is the thermal diffusivity, and a

dot over a variable denotes a time derivative. The justification of

the use of the uncoupled form of the Fourier equation is referred to

Boley and Wiener [161. The effect of the dynamic term may result from

either a dynamic loading state or a thermal shock in which the rise

time of temperature is of the order of time of passage of the stress

waves in the material. Duhamel [17] stated that the dynamic term can

be disregarded if the time rate of change of temperature is slow

enough. Parkus [181 showed that the significant effect from the

dynamic term can arise only when there is an instantaneous change in

the surface temperature or in the temperature of the surrounding

medium. In fact, the dynamic effect is greatly reduced if the

temperature change occurs in a very short, but finite, interval of

time. This was confirmed by Danilovskaya [19-201, who studied in

detail the dynamic effect due to a thermal shock on the surface of a

half-space and demonstrated that the maximum dynamic stress is reduced

5



to 86 percent even for the extremely short duration heating of - "2

seconds. The small effect of the dynamic term, in Equation i.1), will

be neglected and wind up a set of quasi-static uncoupled equations.

The quasi-static equations readily allow us to apply the method of

integral transforms.

6



Chapter 2

Problem Statement and Solution Technique

Under consideration is the problem of thermo-mechanical cracking in

a coated medium caused by a fast moving asperity whose effect is

separated into a moving heat source and a moving mechanical load of

combined pressure and tangential friction force. The size of the

asperities are of the order of 1 mm; the total thickness of the medium

including both the hard wear coating layer and the substrate is at least

an order of magnitude larger. Mathematically, the material is

represented by a half space with the asperity traversing over the

surface boundary at a uniform speed (V) as shown in Figure 1.

2.1 Basic Equations

Two sets of coordinates are considered: xl-x 2 ' Ae fixed to the

medium (the material reference frame), xl-x 2 are fixed t, oving

load ( the convective reference frame). The governing difi -ial

equations are the thermo-elastic Navier's equation and the uncouplet

Fourier equation, respectively, expressed in the material coordinates,

(A +p)i + a -U06 + (3A+21s)aiTf, (2.1)
fl~ iii3 + i Pj J j Ip fl i

fl aTii T- , (2.2)

where ai - a/axi, the indices in the subscripts i,j,k have the range

7
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x I- x2 are fixed to the m~oving load

x i-x 2 are fixed to the medium
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1,2; the summation convention is used for all repeated indices

Roman minuscules, 0 denotes the layered region: I for the cct:ing

surface, II for the substrate. The stress field [aij} is related to

the displacement field [ui] through the thermo-elastic Hookian law:

afi - X + uA .(a UO + a u) - (3A +42, )a TOS (2.3)
ij pak~ij I P Is0 i,

where 5ij is the Kronecker delta. The field variables, (uj) and T,

as found in Equations (2.1) and (2.2), depend on xi and t. The

configuration shown is Figure 1 changes as time varies. Therefore,

time is an explicit variable, and the problem is transient. However,

by taking into consideration the uniform properties of the materials,

asperity motions and loadings, if the coordinates are fixed to the

asperity the configuration remains invariant to time. We thus justify

the invariant states of field variables. In other word, with respect

to a convective reference frame, the analytical formulation becomes

"steady-state"; that is, there is no explicit time variable. The

analytical complexity may be alleviated with the use of the convective

coordinates (xl-x 2 ). Equations (2.1) and (2.2) become

iju# + (1-2v ')a J.U - IN2(l2v)a,,u.8 + 2 (l+vfi)a ca8 T, (2.4)

X aj T - VaiTO, (2.5)

where v is the Poisson's ratio, M - 1V2pII/UIII /2 is the Mach number

of shear in region II, and f , i.e. I AIlPl/AIII'

and 3I= I. Time is no longer an explicit variable. The boundary

9



conditions are:

on the surface, X2 - 0

a2 - " '  (2.6)

kIa 2TI - -2 (2.7)

where k, is the thermal conductivity in the surface layer, R =

Af (xl) and R2 - P(x 1 ) in the contact region and zero elsewhere. The

convective heat loss at the free surface, being of small order, is

neglected without loss of generality. Regular conditions hold at

infinity; that is, at infinity

- 0 , T - 0 (2.8)
1J

The mechanical and the thermal fields must also satisfy the

continuity conditions at the layer/substrate interface, x2 - H

u! -u! I ,a _ all2.j 2j' (2.9)

TI 2 T I - a2Tll. (2.10)

It is noticed that the governing differential Equation (2.4), and

the boundary conditions (2.6) and (2.7), are both non-homogeneous. By

separating the fields into two parts, such that

ai, U - ai U# )T + I i u M' (2.11)

t10



where the subscripts T and M represent thermal and mechanic:-.,

respectively. The first set shall satisfy the non-homogeneous

differential equations with the homogeneous boundary conditions; while

the second set shall satisfy the homogeneous differential equations but

with the non-homogenepus boundary conditions. Essentially the

solutions are delineated into one resulting from the temperature field

and another from the mechanical traction. They are, respectively, the

thermal stress field and the mechanical stress field. Nevertheles;,

for single material (equations and solutions see Appendix A), the

thermal stress (aT ) for various speed and mechanical stress (A ) are

shown, in Figure 2, that if the asperity speed is larger than 0.127

ms "I (5 in/sec), the thermal stress dominates the failure, and the

mechanical stress becomes less important. Therefore, for the case of

"hot spot", because the asperity traversing speed is much higher (more

than 5 ms-1 ) than the indicated limit speed (0.127 ms'1 ), the study in

the sequel will focus essentially upon the thermal stress.

2.2 Coverning Equation

By using the .ollowing dimensionless variables:

- x1/a, - x2/a, D - H/a, u - ul/a, V - u2/a ,

a, -a 61/P o , aq - a2 1/Po, a ?= a 2 2/P o ,

C 1 - [(All+2Ml)/pl]l/ 2 , C2 - ( 1 )/ 2, C [)I4 -]/2

Ii
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C02
U2

- 44
U, 4-1

- -4

0

44-i

ao.a.JU

U, 5.. 4)

J) Q

*e-44 - (4.

1 +30*t
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* - (A1 /Pl)1/ 2, b - [(3A1 1 +2uii)/Pli] 1 /2, b* [(3A +2y ]1/2,
C2 11 11 1(1+2i ; ]

71 - q0aai/k I , 72 - qoall/kll, I - C/C 2 , J - C/C 2, 6 - /Pll,

M - V/C2 , N - CI/C 2 , P - T/P0 , Q " q/qo, R I -Va/xI, RII -Va/lI,

(TO-To)kI/qoa-

Equation (2.4) becomes:

a +uB (ab a2V + b -2O c a - 5M 2 a2u , (2.12-a)

" vP au a17v c 2v/ a 3

b a- - + (a b a2a. + apa - " -p -- aM2  (2.12-b)
)38.g2 P_ j5 a~r 17 P- 2 ?

(a,,b,,c,,] ( 2 ,J 2 ,(b*) 2 _/C 2 , 1/J 2  for P- I;

(a ,b P, c, - (N 1,b / 2,J1 for P- II,

where M is the Mach number in the substrate, and equal to V/C2 , C2

is the shear wave speed, and V is the traversing speed (or the asperity

speed), which is, without loss of generality, of the order of 15 ms- I .

M1 denotes, therefore, the Mach number in the surface layer, which

for hard wear material, such as Stellite [II, is of the order of 103.

Since the magnitude of !M2 is of small order to a and b the dynamic

terms on the right side of equal sign in (2-12-a) and (2-12-b) are

negligible comparing to the first terms of both equations

Equation (2-12) thus is simplified to the quasi-static form:

* 13



a 2u8 a2vi a2u0i a'of
+ (a.b,) aa + bf " -a)

a 2vO a~u a2V,6 ao's
b + (ab,)--, - -T - 0- . (2.13-b)

0--v0 n+ a, 8, a f

The Hookian law, Equation (2.3), is thus

oi - Po a,"T, + (a^+b-) - c (2.14-a)

a2 b avo + _J (2.14-b)

-" PO- ,a j6 + an

-a d ( (2.14-c)
7 _ r u POa a - -

where d -pi/pP, that is, dI - 1; dll - 6. The boundary conditions are:

a A p(') at q - 0 -1 _< 5 1, (2.15-a)

1:" 17 0,
%-"-1:o I. f -P(s) -1 < 1< I 7 0

a -(2.15-b)

?7 [ 0 -1_ and 1 0- 0

oI 1, aI ! aI1  0 as 2+72 0, (2.16)' 17

a I - all a I _aii at7- D, (2.17-a)
17 7' 77 717

Vi u T , vi ' v' "  at 7 i D. (2.17-b)

The Fourier equation, Equation (2.5) is expressed in the

dimensionless form as:

14



a2003 a200 ___ o2.8
a3 2 + 5TJ7 - R a (2.18

In the next section, the solution of these sets of equations,

Equations (2.13), (2.14), (2.18) will be obtained, using the Fourier

transform method.

2.3 Integral Transform Technique and General Solution

In this section, we will develop in the Fourier transform space the

general solutions for the quantities (uJ, vO, a 0, a '3' a }
-~ ' 17 ?717

2.3.1 Fourier Transform

In view of the boundary conditions and the problem itself, by the

results in [21], the appropriate representation of the solutions may be

obtained by the Fourier transform defined by the following equations:

g(s,'7) = g(n)exp(is )d (2.19-a)

g -+ 2i c g(s,q)exp(-is )ds (2.19-b)

where s is the complex transform parameter, and g(s,n) denotes the

Fourier transform of g(",n). Equation (2.28) forms the Fourier

transform pair.

2.3.2 Mechanical Stress Field

94 15
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With reference to Equations (2.11), (2.13), and (2.14), - -

equations to be used for the mechanical portion of the solu7-ons are

the following:

a2U5 a2,05 a2u/
a,-8 + (aE'bE) a,81r + b a,7 " 0, (2.20-a)

a 2vO a2up a2v
b/ -- + (a,-b,) aar/ + a, , 8-7- "of (2.20-b)

a 8 A2 a a- + (ab) ], (2.20-c)

-a+ ] (2.20-d)

aua av,6

A2 d[ (a +b + a (2.20-e)

The boundary conditions, the regularity conditions, and the continuity

*conditions are, correspondingly,

17 Pfp(.) at q7 - 0, - _ < 1, (2.21-a)

a -_ O - 0 (2.21-b)

?177 0 -i_ and I _ -0

a l l al l a l  
-* 0 as 2+,r2 . 0, (2.22)

a, a -COi at q-D, (2.23-a)

u I 
Iu

I I, v I -v I  at 1 -D. (2.23-b)

16
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The transformed equations may be obtained by taking the .ier

transform of Equations (2.20-a) through (2.20-e) with respe;-_ to :

b. d)a dvP a -
s
2 0, (2.24-a)d =  (s) (A - A) dT 7 "

Sd2v l )(a b) d 8  a s2vA 0, (2.24-b)

- ; f- Pr dq P

a - d (a -2b.)- - )a ,(2.24-c)

A2 dufl

a7 -- 0 d Abo is) (2.24-d)

- 2 d;-+ a 2
a -- d af -' + fi b .) (2.24-e)

The boundary conditions in the transform space are

I P -(Sf) P*(Q)exp(isC)d at n - 0, (2.25-a)

a - -P(s) - - P*(.)exp(is )d at q - 0, (2.25-b)
1777 CO

where

P* 0 -1 _ and >I

Because the Fourier transform requires the function in the -

direction to be either exponentially bounded or to vanish at infinity,

*- therefore, the regularity conditions in the transform space at infinity

become:

S1.'.
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aII aII, II - 0 as 72 - (2.26)

The boundary conditions become:

a I a a I -a at - D, (2.27-a)

uI V- at ?1D. (2.27-b)

From Equations (2.24-a) and (2.24-b) we have

i d3vp (a-2b) i dv, . b (-- -- d- F - "  ( - (-_3 a (2.28)

a-b (a- b) d

d4;1 d2 v

- 2s2 -jTy- + s4v' - 0. (2.29)

The general solution for Equation (2.29) is

.v - a* exp(-ns) + b* exp(s) + cn exp(-ns) + dn exp(ns). (2.30)

Substituting Equation (2.30) into (2.28) we have

* a 2i *ep-s

exp(-ns) - b* exp(ns) + (-- )-(c exp(-s) +t~B- af b^

+ d* exp(7s) +n7 c n exp(-ns) - d*1q exp(ns)A, (2.31)

where p - -a/b . Then, substituting Equation (2.30) and (2.31) into

(2.24-c) through (2.24-e), we obtain the mechanical stress field solution

for Re[s]>0, as follows:

18
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a d s[ 2b,(a* exp(-?7s) - b* exp~vis)J +
O 00 0

2a -b I
" 2bO(--- -0-J--( c* exp(-ins) + d* exp(17s)) +

" 2b i,(c* exp(-ns) - d* exp(ns))] (2.32)

a. - 20~~b[-2a exp(-y7s)+ *epn)

2(( -1- +7) ex(ts)

1 6

+ 2((- -1)- - i7)d* exp(17s))I, (2.33)

a ~~ db~s[ -2(a* exp(-1s) - * exp(n's)J
f7 77 P0O i

2
- -(c* exp(-v~s) + d* exp(vns)J

ps )6S

- 2,7(c* exp(-17s) - d* exp(t~s)). (2.34)

Using the *egularity condition (2.26)

b* - d* - 0. (2.35)
II II

For Re[s] < 0 we can get a similar set of solutions, where a*, b*,

*c, and d* are function of s and depend upon the pressure distribution

profile P given by

*1 19



2sin(s)
s (2.36)

for a uniform unit pressure in the contact region, -1 : 1.

Now enforcing the boundary conditions (2.25) and (2.27), the six

coefficients aI, b* c, d* al, and c can be solved from six

algebraic equations. The six algebraic equations may be presented in

matrix form as Equation (2.37), and to be solved in Chapter 3 by Gaussian

elimination using the computer subroutine "DECOMP".

Let A =E (2/p 6l)/s+DeDs SI = 1(2/pIl)/s-D]e-Ds
t =(1'I/P )/ s -D ]e -D s  TI = 1(l3l/PI)/s+D]e-Ds

S# = -(I/(p s)+D]e-Ds 7I = -[(I/(pIs) - D ]e 'Ds

and

AU M - ZM (2.37)

where

-1 - (l-l/p1 )/s -(l-l/p 1 )/s 0 0

-1 1 -l/ps -l/p s 0 0

e'Ds "eDs Ie'Ds -AII
I I

eDs eDs De-Ds DeDS e-Ds De-Ds

-e-Ds -eDs e-Ds/6J2 1 6j 2

-e-Ds eDs 1 e'Ds/6J2 "/6J

S20
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aAlPf p/SJ2
i aI

b p6j2

* 0CI

M dI  M 0

a* 0

* 0

2.3.3 Temperature Field

The governing differential equation for the temperature field,

Equation (2.18), is restated here:

a20/3 a20 _00PI
*2v,.: " a + --a. 2 - R - I, II, (2.18)

The boundary conditions, the regularity conditions, and the

continuity conditions are

14 0- Q* -Q(j) -1 _< js _< 17-0

07 -1 and ~ 1 ,0

_Q )D,- , (2.39-a)

" , - D, (2.39-b)

_01, II - 0, as -2+n2 (2.40)

where B - kll/k I. Equation (2.18) in transform space becomes

* 21
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d72  - (s2-iR~s) , - 0. 
(2.41)

The solution of Equation (2.50) is

- A~exp(-Js 2-iR s q) + B'exp(js2 -sR s 7) (2.42)

where Re[s 2 -iR 3 s ] :! 0, A' and B' are function of s and depend

upon the heat input profile Q* given by

2sin(s)

Q " s (2.43)

for uniform unit pressure and friction. Using the regularity

condition (2.40)

Bj, - 0. (2.44)

"

Applying the boundary conditions (2.38) and (2.39), the three

coefficients Aj, BI and Ajl can be readily found:

A' Q ** (F+2F II)I F(l-exp(-2FiD)) + F FI(I+exp(2FID))

Q (F 1 1F)exp(-2F D)
2' (2 .45-b)I -F lexp(-2FiD)) + JFFIF I+exp(2FID))

Q*exp((FI. FI)D

A 2Qep(F 1 ~ 1 D (2 .45-c)
FI(I-exp(-2FID)) + BF FI(+exD(2FID))

'S..
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where F - S FI - sl iRllS, Re0F 0, and Re' 0.

2.3.4. Thermal Stress Field

From Equations (2.11), (2.13), and (2.14), the equations for the

thermal component of the solutions are:

a.382--u ( 'B 82v + 82cuP 246a

a 2vU1 a2uO a~v a 0
a 3a-:2 + + b - , (2.46-a)

3 3;2~ (a.. an aB a7

b - +( b + a7 (2.46-b)
2 + a(a+b) a a 07

13 2  ajf av 3
- A2 d aa + (a,+bp ' (2.46-c)

r 3 P 2  d b (2.46-d)

U,.

7'7.PO d 3 (a +b 13)-y- + an j.- (2.46-e)

The boundary conditions, the regularity conditions, and the continuity

conditions are

.1 -I 0 at n - 0, -i 1 5 E 5, (2.47-a)

a I - 0 at r - 0, -1 < : < 1 (2.47-b)

'I iU, l II _ 0 as 2 +n 2 
-* (2.48)

:, i i I 7I I

11 a:I - a at ' - D, (2.49-a)

* 23



u I
- u I I  v I - v I I  at , - D. 2.49-b)

Equation (2.46) in the transformed space become:

a1

d23 dvd "
a du2  - (.s) (43-/) - a s -(is)c/ , (2.50-a)

- -- 0s ( ) dv/d
dvdO

d2 d [(a - )is)a cU/ (2.50-c)a P0  ) ( b dq " d ],

C.'P

/3 / 2 dv/b bi)u3 -d

a- r- d s(2.50

"6 - 'u di a + (a 2 -3 C j. (2.50-e)

The boundary conditions, the regularity conditions, and the

continuity conditions are transformed into the expressions (see

comments before equation (2.26))

a 1 0 at - 0, (2.51-a)

a 7 -0 at - 0, (2.51-b)

,l a I -). 0 as ?72 + (, (2.52)

a I aI i a I -a" at - D, (2.53-a)
T77 77 7 77 7?7

- u ,  v - v at - D. (2.53-b)

% % %.....-



From Equations (2.50-a) and (2.50-b) we have

'-b i d - v (a-2b) b dy!

Lil - (a13 b - -)

+ --+ (-)00 (2.54)

a + (a -b ) ( ) 0t2  a •

d~v13  d2vi a0313 a01
d,7' 2s2 d 2  

+ s'; - E a 3  E s2-0, (2.55)
dt7 4 3a, 13 3 ?

where E - /a Equation (2.55) is a fourth order nonhomogeneous ordinary

-5 differential equation, where the nonhomogeneous part comes from temperature

field. The complementary CvP solution of Equation (2.55) is

Cv, - A* exp(-ns) + B* exp(ns) + C>n exp(-ns) + Dn exp(ns). (2.56)

Let the particular solution PvO of Equation (2.55) be given by

PvP - 'Y 0 exp(-Fas) + 0 exp(Fls). (2.57)

Substituting Equation (2.57) into (2.55), we obtain:

-FE F"-FP.'a Af s B' "  (2.58)
1 F2 -S2  1F 2 -s 2  3

The general solution of Equation (2.55) is obtained by combining the

complementary and the particular solutions. That is:

* 25
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vi3 - A*exp(-v~s) + B*exp(,qs) + C>n exp(.,ns) + D r exp 7s -

+ A[f exp(-F 0s) + 0 exp(F As). (2.59)

Substituting Equation (2.59) into (2.54) we have

u, [ A exp(-?7s) - B~ exp(tqs) + (~- - s exp(-q~s) +

+ D*exp(77s) +n(c n exp(-iqs) D Dq exp(tns)J

- G exp(F0s - H 6exp(F/s)]. (2.60)

where

FO )3_ + +) E/[ )2

H F )+(-1 +1)() P[ Ei 2-B

p (0) s/ /3Ls a p .1 s

Equations (2.59) and (2.60) together with(51-c),(51-d),an
- and

(51-e) yield

A2d s 2b/3(a*ep ns - b* exp 7s)J +

+~ 2b 34 C exp(-s) +d x~s

2a-b 1

2b/3?7(c* exP(-t7s) - d* exp(?) +

+ K 13 exp(-F3S) -L13 exp(F/3S)] (2.61)
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a (is)doa - 2(a* exp(-i7s) + b*exp(17s))

-2((-~ -1)-- + 1)*exp(-t7s) +

+ 2((-p -1) s 7dexp(,ls)I

- N -x(F ) M exp(F 0 S) 1 (2.62)

- A2 d,3b/s[ -2(a* exp(-t7s) - b* exp(,7s))

2
- -(c* exp(-ns) + d* exp(ins)) -

p 0s /3 Is

- 27i(c* exp(-ns) -d* exp(,ns)] +

+ QO exp(-Fs) - exp( F/3s)], (2.63)
b b3

where

F c
K - -a lG. (ap2bo) Q/- s18)3

FF

L - H + (a12/3

QN a - 2b (-u-a-)

3 /3 s

2 C

Q/3 - a/3~b/3C/3 a/()~I/3s



W 5- -(a -2b )H - a (----) ) B'

Using the regularity condition (2.61)

b* * 0. (2.64)

Applying the boundary conditions (2.51) and continuity conditions

(2.53), the six coefficients A* B , CI DI , A and CII can be solved

from six algebraic equations. They have been represented in matrix

form as equation (2.65), to be solved in Chapter 3 by Gaussian

elimination using the computer subroutine "DECOMP".

A 1U (2.65)

T T

where

• * * * * *

Transport matrix of U - A B C D* A T CT

" and

(NI+M )/2

- (QI+WI)/2J
2

-G iiexp(-FiiD) + GIexp(-FID ) + H~exp(FID )

T
II exp(-FIIDI + I+ exp(FiD)

\-Niiexp(-FiiD)/8J2 + Nlexp(-FID ) + Mlexp(FiD)f /2

{Qiiexp(-FIID)/SJ2 GIexp (-FID)/J2 '; Iexp FID]/J2 /2

28
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Chapter 3

Numerical Solution

3.1 Selection of Branch Cuts

In discussing a correspondence v = A(z) we use the word "function"

to mean that A assigns a single value v to each permissible value of z.

Sometimes this fact is emphasized by saying " A is a single-valued

, function". Of course there are equations which do not define single-

valued functions. For example, in the solution of temperature field

(2.51), Fp = Js2 -iRps is not a single-valued function in the complex

t-. s-plane. Indeed, for each nonzero s, there are two distinct values of

F3 . Since the concept of analyticity was defined only for single-valued

functions, we can not directly discuss this property for multiple-valued

fucntions such as Fp = js2 _-Rps. We shall, however, investigate the

analyticity of certain single-valued functions which can be derived from

a multiple-valued function w - A(z). We construct these single-valued

functions by focusing our attention on a domain D and selecting a single-

value function which is analytic in D, and then we call it a BRANCH of

h(z) in D.

To define the branch of the double-valued function on Fp = Js2-iRos

such that Re[Fp] 0, we write

.4

F - (s-Rs)1/2 - 1/2 (1R)1/2 (3.1)

and carefully define, using Figure 3, sl/2 t 1 exp(iO1 ), (s-iRO)1 /2 -

4I 29
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t2 exp('e 2 ), with the values for 81 and 82 shown below. On an

select the branch cuts along the imaginary axis in the s-- Lane, and

the range of 91, 82 such that

- 7r/2 5 01 < 31r/2 (3.2-a)

and

- 3r/2 : 02 < Ir/2 (3.2-b)

so

F0- (t 1 .?= L /2exp(i(0 1 +9 2 )/2 (3.3)

Note: 1. For the points along the real axis and along the

imaginary axis between (0,R6), -r/4 < arg(Fg) : 0.

2. For the points just left to the cut (0,--), or left to

the cut (R,) arg(F) - r/2.

3. For the points just left to the cut (0,--), or left to

the cut (Rp,-), arg(Fp) - -ir/2.

43.2 Outline of the Computer Program

In simple applications of Fourier transforms, the transform

parameter s is a real variable and the path of inverse Fourier

transform coincides with the real axis. In view of the expression in

4 Equations (2.42), (2.61), (2.62), and (2.63), there are branch point at

the origin an at s - R 0. There is also a pole at the origin. The

- integral is therefore singular. According to the branch cut selection,

we can have a strip of analyticity as shown in Figure 4. Knowing from
-m4

complex analysis [21] that, if the function g(s,n) is analytic in a

.
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domain D, the integral is independent of the path. Therefor ithin

this strip of analyticity, we can translate the integral p. :.-. parallel

to the real axis over a distance c to avoid the singularities.

All solutions, obtained in Chapter 2, are in the transform space.

Physical solutions are obtained with inverse transforms. In general,

the general solutions, Equations (2.30,31,32,33,34,42,59,60,61,62,63),

are too difficult to invert analytically. Numerical inversion is

possible using the computer subroutines "DECOMP" to perform Gaussian

elimination and "KQUAD" to perform the inverse integration. Both

subroutines "DECOMP" and "KQUAD" are in a IBM-3081D computer. DECOMP

solves a linear system of equations by Gaussian elimination; KQUAD

integrates real functions of one variable over a finite interval, using

an adaptive quadrature scheme based upon Gauss-Kronrod algorithms.

These two subroutines all deal with real functions and variables,

but the present problem involves complex functions of the complex

variable s. Therefore, we do the following work for the computer:

(i) For the program "DECOMP":

Basically, we solve a linear system of equations in matrix form as

-, f-~ (3.4)

where K, X, and (I are all complex, we can decompose them as

follows

Se 33



(a + ib)(x + iy)-(c + id)

(ax - by) + i(bx + ay) = (c + id) (3.5)

This equation may be written as

a -bJ { X I f C (3.6)b a]Iy f -I d f

Equation (3.6) suggests that, instead of inputting a 6x6 complex

number matrix, we input a 12x12 real number matrix.

(ii) For the program "KQUAD"

We integrate functions like:

g( ,q) - c g(s,q)exp(-is )ds, (3.7)
+ic

where g( ,n7) is a real function, but g(s,q) is a complex function,

.- 1. Therefore, for a real variable solution, eventually, we do the integration

g(,q) ReJ g(s,n)exp(-is )ds], (3.8)

where Re[ ] means "take the real part of the function in the square

brackets", Equation (3.8) can also be rewritten in terms of the real

variable u as

g( ,O) - TO Re g(u-ic r/)exp(-i(u-tc) )]du. (3.9)

The Equation (3.9) indicates that, instead of integrating a complex

34
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function, we can just take the real part of the integrand and - inslate

the integral path by a distance c parallel to the real axiF 71 avoid the

singularity at the origin, and then integrate it by computer.

35

IV,-

% .k1

-%A



Chpater 4

Parametric Study

4.1 Asperity Parameters and Critical Depth

The asperity parameters consist of asperity speed V1, pressure P,

and contact area a. The coefficient of Coulomb friction pf relates the

normal force and the friction force. The friction force generates both

the mechanical portion and the thermal portion of the stress state.

Its rubbing speed (V) influences the thermal input. It is readily

conceivable that, at low rubbing speed, the mechanical portion of the

stress dominates. The static case of V-0 is indeed the limiting case.

Therefore, at high speed, the thermal stress prevails (see Figure 2).

Without loss of generality, the distribution of asperity pressure is

assumed to be UNIFORM, for mathematical simplicity. For the effect of

non-uniform pressure distribution, see the results of Ju and H-uang

[9,10,1, it was shown that the assumption of uniform distribution of

asperity pressure will result in stresses 40% less than those from

three-dimensional non-uniform distribution of pressure [10,12,13].

However, it is adequate to use this assumption in the study of

interaction among various parameters without actually predicting the

stress level for fracture initiation.

We shall designate r cr as the critical depth where maximum

principal thermal tensile stress occurs for single material or for the

- .coating as a single material, and n a that for the coated medium.

* 36



For various parameters and coating thickness, the anal,

NN principally will locate the depth qmax' This depth is dep. :ent on the

material and the coating thickness From the set [rma:,', the worst

case corresponding to one with the highest maximum thermal tensile

- stress is important to the designer. Such a worst case is related to

the critical depth cr"

The depth ? cr' for a single wear material, where maximum principal
thermal tensile stress occurs is shown in Figure 5. In this figure,

the solid line represents the theoretical n cr as a function of Peclet

number. The analytical computation of this solid line is from the

solution of thermal stresses for a single material (see Appendix A).

For the numerical result, we select two materials, Stellite III and

.. Aluminum Oxide, as the test materials. Varying the Peclet number

.5 (R-Va/c) for both is therefore accomplished with varying the asperity

traversing speed. The principal thermal stresses in the trailing edge

*' of the asperity is calculated for changing depths from the wear

surface. Then the critical depth ncr is obtained where the maximum

principal thermal tensile stress occurs. Hence, we have the

relationship between the 7cr and the Peclet number for the two-

dimensional case.

The critical depths for three other materials Aluminum (Al),

Silicon Carbon (SiC), and Zirconium (Zr) are computed for the same

asperity speed of 15 ms 1l , and the same asperity width of 0.254 mm.

For each of these materials, the material properties are different from

those of the test materials. It is shown in Figure 5, the critical

37
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depth 7cr of each material falls on the theoretical lin mis

illustrates that the critical depth, for a single asc ._zv excitation

over a single wear material, depends predominantly .::on the Peclet

number, R-Va/. From Figure 5, the relation between the ? and the

Peclet number for the two-dimensional case can be expressed by a simple

equation as:

o.275
R( cr)27 = 20.4368 (4.1)

Figures 6 and 7 show, as functions of depth, the thermal principal

stress () and the temperature gradient for Alumimum and Stellite III,

respectively. From a physical point of view, if the asperity velocity

and contact width are constant, higher Peclet number means the

diffusivity is small. Hence, the speed of the heat transfer into the

medium is slower, and the depth ? i moderately shallow. On the

other hand, from a mathematical point of view, Equation (A.19) shows

that, for higher Peclet number, the decay rates of the temperature

gradient are greater. Therefore, the depth to reach the maximum

principal thermal tensile stress will approach the free surface

asymtotically as the Peclet number increases and vice versa. Figure 6

is for Aluminum and Figure 7 is for Stellite III, because the Peclet

number for Stellite III (R 1400) is larger than Aluminum (R 34) for

a given velocity, consequently, the (c)A is larger than (q
cr Al cr St'

* These two figures not only illustrate that the maximum principal stress

occurs around the point where the temperature gradient begins to

attenuate, but also imply the results of Figure 5. The principal

therma: stress at various depth at the trailing edge of the asperity.

4.,

-39-

JI V

- .7.- .... . . . . . . . . .



2."7
oi

553

U

--

W Ei

4.)4

I-o

C C C S o c a c a C S

~ -3. . . .11 1 I

-4-

f-s "

S..

-€ / , " :.', ,, .-/ -'." ',, - " '- - . ' - -.i 2-/ ¢'- -- .' .- --:- ,-... -.. .--. - - .



4-

4-.j

Li

41

C,

V,~ Lo.o1t



n | .. rrw W - -- W.,

for different values of Peclet number, the non-dimensional -_s in

Figure 8 incorporates the material properties to yield ma' .- ial

independent values. Therefore, in any given material, for a given

Peclet number, we can obtain the critical depth q cr from Figure 5 or

Equation (4.1). The maximum thermal stress corresponding to a given

Peclet number can be obtained for any material from Figure 8.

4.2 Material Parameters

d..

As the emphasis of the paper is on the friction force and the rate

of frictional work, the simple linear Coulomb law is used, Ff - JfFn,

for analytical convenience. The rate of frictional work heats the

, %surface layer of the wear medium to raise the surface temperature,

which in turn increases the Coulomb coefficient jif with resulting

'.. further increase in friction force (22]. The present analysis avoids

the iteration by using the maximum Coulomb's coefficient of friction to

anticipate a steady state high temperature field. Equation (8) shown

that the mass density (p) affects the stress field through the Mach

number (M) and the thermal field through the thermal diffusivity (K -

k/pc). Since the Mach number is generally so small for this class of

problems, the effect of the mass density is principally reflected

through the thermal capacity (pc), where c denotes the specific heat.

The mechanical constitutive coefficients and the coefficient of

thermal expansion affect the thermal stress field through the material

compliances and the thermal dilatation. Stiffer material and high

thermal expansion are known to contribute toward higher thermal
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stresses. The effects of the thermal parameters (k,c,pc c

tivity, diffusivity and capacity) can be found from Ju arn iuang [12]

and Ju [13]. These references show that the thermal diffusivity is

indeed a derivative thermal parameter. It is the individual value of

the thermal capacity, the thermal conductivity or their combination

that determines the thermal field, and the stress field that leads to

thermo-mechanical cracking of the wear material.

Hence, for the mechanical and thermal impedance matching between

the surface layer and the substrate, we will therefore consider the

differences in mechanical constitutive coefficient, coefficient of

thermal expansion, thermal conductivities and thermal diffusivities.

4.3 Coating Layer Thickness Effects

The estimate of thermo-mechanical cracking from high speed asperity

excitation in the layered medium is more complicated than that of a

single wear material. The latter, as shown by Ju and Huang [9,10,121,

predicts the fracture initiation in hard wear material to be cohesive

failure at the depth nmax, where the maximum principal thermal stress

occurs. For layered media, the initiation may occur: (1) inside the

surface layer, (2) in the substrate, both through cohesive failure, or

(3) at the coating/substrate interface through shear delamination. Ju

and Chen [8] have shown that, for a thick coating layer, with thickness

of the order of the asperity size, the critical stress will be inside

the coating at the thermal layer. The present paper thus will address

the stress states in the surface layer as well as in the substrate for
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various coating thicknesses, taking into consideration the _ cts of

mechanical and thermal impedance mismatchings. The follo.: .z results

are based on Stellite III as test material for both surface layer and

the substrate.

4.3.1 Effects of Differences in Mechanical Impedance

The effects of both the elastic coefficient and the coefficient

of thermal expansion are mechanical. In the solutions for thermal

stresses, they appear as a group, aE/(l-v), which defines the

mechanical impedance for both the surface layer and the substrate.

Figure 9 illustrates the depths qmax of maximum principal thermal

stresses, as a function of the coating thickness based upon a given

substrate property. In this figure, the substrate material properties

are constants and the mechanical properties of the surface material are

considered as variables. An increase in value of the dimensionless

parameter IT - [aE/(l-v)]l / [zE/(l- V)]II - 0.2, 0.5, 2.0 and 5.0

indicate, respectively, two softer surface layers, and two harder

surface layers. If coating thickness less than the depth cr of the

coating material (for our case, it is assumed ncr - 0.16), the maximum

thermal principal stress occurs in the substrate. The nmax will

slightly change, depending upon the value aE/(l-v) of the surface

layer. If f1M for the surface is larger than flM for thesubstrate, then

the surface layer is harder than the substrate. Therefore the

displacement gradient in the surface layer will become larger than the

substrate. From Equation (2.3), indicates that if the displacement
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gradient of a surface layer for a layered medium is larger 'or a

single material, then the temperature term is not affecte. '-y a change

in mechanical properties, and therefore the position where the maximum

principal thermal stress occurs will be shallower than for a single

material .Conversely, it will be deeper than for single material. For

coating thickness larger than q cr, because we didn't change the Peclet

number for surface layer, the qmxwill be the same as treating the

surface as a single material. Consequently, the layered medium is

similar to the single. This implies that, whether a layered medium is

like a single material or not, it depends upon the Peclet number of

material. When the Peclet number is large, the n c is small, and then

only a very thin coating can be treated as single material.

* In Figure 10 and Figure 11, the surface material is fixed. Figure

10 illustrates the maximum principal thermal stress in the surface

layer, aT, as a function of the coating thickness. The values of the
I,

dimensionless parameter H,4 - 0.5, 1.0 and 2.0 indicate, respectively, a

harder substrate, same material and a softer substrate. For coating

S.thickness less than the depth q~ c, the maximum thermal stress in the

coating layer occurs in the neighborhood of the coating/substrate

interface. With increase of the coating thickness, greater than the

depth t7 c, the maximum thermal stress is in the neighborhood of the

depth f7max with diminishing effect of the substrate. It is noticed

that, after a value of 2n,~ the result is no different from that of a

single material. Figure 9 shows the corresponding maximum principal

thermal stresses in the substrate, uTila ucino h otn

thickness. Since max for thin coating is inside the substrate, the
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maximum thermal stress will occur therein. The maximum sub -ze

stress for coating thicker than the depth Icr will be at "

coating/substrate interface. The prediction of fracture initiation

must depend on the cohesive strength of individual materials of the

coating and the substrate.

4.3.2 Effects of Differences in Thermal Properties

Figure 12 shows the depths of maximum principal thermal stresses,

?7max' as a function of the coating thickness based upon a given

substrate material property, with conductivity ratio, k " kl/kll, as

the parameter. The values of Hk - 0.2, 0.5, 2.0 and 5.0 indicate,

respectively, two more insulating surface layers up to two more

conductive surface layers. In this figure, we do not vary the

substrate material properties. When the coating thickness is less than

" cr' the value of qmax will slightly change, due to the conditions of

the surface layer. For the more conductive surface layer, because more

heat can be dumped into the substrate, the qmax will be deeper.

Converserly, n max will be shallower when we have a more insulating

. surface. Because the Peclet number is not changed, when the coating

thickness is larger than qcr the qmax will be equal to n

Figure 13 shows the maximum principal thermal stresses in the

surface layer, aT , as function of the coating thickness, with the

conductivity ratio, 11k - kj/kll, as the parameter. Similar to the

case of mechanical mismatch, the maximum stresses in thick coatings

are at the depth ?c and approach that of the single wear material.
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'.'hen the substrate is less conductive, Ilk - 10.0, the therri stress
is higher in the surface layer, especially on the coatins .-'xbstrate Tk

II. - 0.5; more heat is readily transferred to the substrate. The thermal

stress is correspondingly reduced. The maximum principal thermal

stresses in the substrate has a similar trend, as shown in Figure 14.

'F.4 Figure 15 (substrate material properties are constant) illustrates

that when we change the surface material's Peclet member, the nmax will

be changed significantly. Nevertheless, there is a general rule to

help us to determine where nmax is. We have used the rule for the

previous two cases. That is, when the coating thickness is less than

the 7 r for the surface layer as a single material, the qa for

% layered media will be determined by the substrate material properties,

but we shall consider the effects of surface layer. At this moment,

when IP < i, it means the surface temperature gradient is larger thanw pc

the substrate. Therefore, from Equation (2.3), the n is slightly

larger than qcr which is defined by the coating material. Converserly,

the ?max is smaller than q cr When the coating thickness is larger than

cr for the surface as a single material, the nmax will be determined

by the surface material properties. Similarly, Figure 16 shows that,

when the surface material properties are constant, then n max has the

same tendency.

Figure 17 illustrates a combined curve for maximum principal

thermal stresses, indicating that the maximum stress for thin coating

'is inside the substrate, but it is in the surface layer for thick

coatings, In both cases, the stresses are evaluated at the depth imax*
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4.3.3 Shearing Stress at the Coating/Substrate Interface

Because of the asymmetrical distribution of the temperature

gradient, the direction of the maximum temperature gradient is as

anticipated, not perpendicular to the wear surface. The resulting

value of shearing stress at the coating/substrate interface is not to

be ignored. In Figure 18, the curve for Ilk - 1.0 can be considered as

the shearing stress at different depths from the wear surface for a

.4.' single wear material. The worst case shows the maximum shearing stress

at almost 30% of the maximum principal stress. The value is

significant in designing the coating/substrate bonding strength to

avoid shear delamination. The difference in thermal conductivities of

the coating and the substrate is shown to affect the interface shearing

stress for thin coating layers, If the coating/substrate bonding of a

thin coating is a primary consideration, the substrate may purposely,

by design, be less conductive.
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Chapter 5

Conclusions

The paper demostrates the significant effects of the Peclet

number and the material mismatch between the surface layer and the

substrate in high speed asperity excitation. Principally it is the

critical depth n at which the thermal tensile stress reaches a

maximum. Peclet number is proven to dominate the determination of the

critical depth, which is zbtained from maximizing the thermal tensile

stress in the vicinity of the asperity trailing edge. In other words,

the asperity velocity, the asperity size, and the material diffusivity

are the principal three factors that dominate the critical depth. A

simplified depth ncr as Equation (4.1) can be approximated. From this

result, the maximum tensile stress in its alternate non-dimensional

form can be obtained for all wear materials. Since the numerical

* empirical equation, Equation (4.1), has been demonstrated not to

depend on the other material properties nor the magnitude of asperity

excitation, the coefficient and the exponent are therefore constants

in the two-dimensional model. It is, however, expected that the

coefficient and the exponent in Equation (4.1) would be function of

the aspect ratio of the asperity contact area. The work is under

investigation with a three dimensional formulation.

The critical depth n is important in the layered media analysis.

It was shown by Ju and Chen [8] that the layer thickness is in the

neighborhood of cr' the thermo-mechanical stress state is most damaging.
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On the other hand, the highest stress occurs when the ::inig

thickness is in the neighborhood of the q'7r' regardless c. T he

differences in mechanical or thermal properties. As the coating

thickness increases to more than the critical depth n. for the coating

as asingle material, there is little effect of the substrate on the

maximum thermal stress in the coating layer. Hence, if a thick coating

is permissible and if the asperity size can be statistically

ascertained, a properly chosen coating layer large than q cr for coating

material can be estimated to insure the improvement on wear resistance

for materials such as composites. For thermal stress analysis of a

layered media, in order to study the impedance matching of the surface

layer and the substrate, it is adequate to consider the thermal

conductivity (k), and the thermal capacity (pc), while the effects of

their differences are negligible for thick coatings; the effects on

thin surface coating are important. Basically, substrates of low

mechanical properties, higher thermal conductivity and capacity will

result in lower stresses in both surface layer and the substrate. The

initiation of the cracks will occur wherever the stress level surpasses

the cohesive strength of the respective material. The critical

locations in the surface layer or in the substrate depend on the

coating thickness relative to the q cr'

The shearing stress at the surface layer/substrate interface is

bv no means trivial, depending again on the surface coating thickness.

The interface shear reaches a maximum when the coating thickness is

in the neighborhood of n max This knowledge is important for the design

of bonding of the surface coating. Any shear crack, resulting from the

-. .~.:...i~'.-*.'e



shear delamination at the interface could cause further ext .-on at

repeated asperity excitations.
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Appendix A

The Equations and Solutions

for Single Material

In this Appendix we present the solutions for the zeroth order

Approximation.

(I) Mechanical Stress Field:

32u a2v a 2 uN 2 - - " 
+ (T2"l) , - - (A.1)3~~I a'7~a~

a2v a2u a v
+ (N2 ) + N 2-  - 0, (A.2)

a u av
N2 -0  N + (N2 +2) (A.3)

u~ av au1
a_ --- (A.4)
?7 P L+,,

A au av -
- - I(N 2+2)--T- + N2  (A.5)

The boundary conditions, the regularity conditions are:

S- fP() at ?7 0, -1 < < 1 (A.6)

f -P(s) - _ < 7 - 0
a (A.7)
?7 7 0 -1 l t and, 2. - 0

o or a - 0 as c2+,72 -. , (A.8)

A.'/



or -a , --a at - D, (A. 9)

u -u v - v at - D. (A.10)

The solutions are

v - a exp(-ns) + c*nexp(-ns), (A.11)

< "2 1
u - [ a exp(-qs) + ( 2q - 1) - c exp(-ns) + c* exp(-,7s) (A.12)

r 2N 2 -1 1
!1 

- - c*exp(-77s)+

C- p s 2aexp(-ns) + 2c +

+ 2c* 7exp(-' 7 s)] (A. 13)

a9.., - (Is)[ -2a exp(-77s) - 2((-q s 177 c*exp(-77s)l (A.14)

2
- -0- s 2a*exp(-'7 s) - (c exp(-ns) 2c*7exp(-?7s) (A.15)

r7 F7 P o q s
a..

where

q - N2 ,
PPo

a* - 1 [i . f

2;1

zPPo1 
ic * - . P O + a ( l - - ) -

c 2sa q s

2sin(s)

P - for uniform unit pressure< , s

in the contact region -1 _ -  _ 1.
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(II) Temperature Field

The governing equation are:

a32 a 2
0 ao

3 + - R -3 (A.16)a 2 3772

-5. The boundary conditions, the regularity conditions are:

f i3€-Q( ) -i _< < 1 -7 0

Q*( - ' n - (A.17)
?7a 0 -> and 1 _I 0

0, as 2+772 (A.13)

The solution is:

-A' exp(-Ys2 -zRs n7), (A.19)

e r e

A'- Q*/F,

.- 1 %,

F - A s2-zRs, Re(F] 0,

S h re

.5s for uniform unit pressure for -1 5 1.

(111) Thermal Stress Field

4565

S.

- MLii, sr* e o r

%'

... , ,...-v v ..,--.. .k-.,:2. -. ..-- - - - - - - - - - - - - - - - - -- - - - - - - - - - - -..--.---.-.-.-.-- "-"..-- -"-.....-;_



='

N2 -7 a + (N2 -l) a + 082  - E2 - - (A. 20)

a 2v 32u a 2 v b 2y 8a
8{2 + (N 2-l) + N2  

- -, (A.21)2a'72 C2 Or

au r u b 2

L N2 _ + (N2+2) - C 2c 0 ] , (A.22)

PO a r 2y

a7 P- [ + a~ JA.23r Bu

A a u av b27

or - (N2-+2)- + N2 -- - (A. 24)
?7?7 PO a aB7 C ~ .

The boundary conditions, and the regularity conditions are:

- 0 at n - 0, -1 _ _ 1, (A.25)

a - 0 at n - 0, -1 < < 1, (A.26)77?7

Sa.,• a -0 as ;2+2 - (A.27)
; 7 ' ?777

The solutions are:
°'.

v - A* exp(-r7s) + Cn exp(-ns) + H exp(-Fr7), (A.28)

SI exp(-7s) + . exp- s +!!q s

a. + C7 e::p(-s) E2 exp(-F/ , (A. 29

'a6

-a,
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a - - sL 2A* exp(-~s 2  '42- N21 C x (
0 1 1 s

+2C* n exp(-'7s) + E3 exp(-Fn)J (3)

a. -7 -O (,sj 2A* exp(-,7s) - 2(-q -1)--- c*~ exp(-vns) +

~ 0  q S

7C* exp(-s) +Es exp('7) (A. 31)

b 2'
El s - xA x(,s G x('s

H-

r1 F. F'

- q s q s
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